DoE SuperTruck Program

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks

Principal Investigator: David Koeberlein (Cummins)

Presenter: Ken Damon

Peterbilt Motors Company

Project ID: ARRAVT081 16 May 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Relevance - Program Objectives (DoE Vehicle Technologies Goals)

Objective 1: Engine system demonstration of 50% or greater BTE in a test cell at an operating condition indicative of a vehicle traveling on a level road at 65 mph.

Objective 2

- a: Tractor-trailer vehicle demonstration of 50% or greater freight efficiency improvement (freight-ton-miles per gallon) over a defined drive cycle utilizing the engine developed in Objective 1.
- b: Tractor-trailer vehicle demonstration of 68% freight efficiency improvement (freight-ton-miles per gallon) over a defined 24 hour duty cycle (above drive cycle + extended idle) representative of real world, line haul applications.
- Objective 3: Technology scoping and demonstration of a 55% BTE engine system. Engine tests, component technologies, and model/analysis will be developed to a sufficient level to validate 55% BTE.

Baseline Vehicle and Engine: 2009 Peterbilt 386 Tractor and Cummins 15L ISX Engine

Relevance - American Recovery and Reinvestment Act (ARRA) Goals

Create and/or Retain Jobs

			$X = X \times X$	Frojections
Year	2010	2011	2012	2013
Full Time	75.5	85	60	46
Equivalent				

States: Indiana, Texas, Michigan, Wisconsin, Tennessee, Illinois, New York, Ohio, Mass, California

- Spur Economic Activity
 - Greater Than \$62M Total Spend To Date
- Goals Align With VT Multi-year Program Plan 2011-2015
 - Advanced Combustion Engine R&D (ACE R&D):
 - 50% HD Engine Thermal Efficiency By 2015 (Ref: VT MYPP 2.3.1)
 - Vehicle And Systems Simulation And Testing (VSST):
 - Freight Efficiency Improvement of 50% by 2015 (Ref: VT MYPP 1.1)
- Invest In Long Term Economic Growth
 - Commercial Viability Assessment
 - Adopt Technologies into Product Plans to Meet GHG and CO2 Regs

Peterbilt Participants

- Contract Lead Cummins
- Suppliers
 - Modine Cooling Module

Eaton – Transmissions

Bendix – Brakes and Suspension

Dana – Drivetrain

Bridgestone & Goodyear – Fuel Efficient Tires

Alcoa - Wheels

Delphi – Solid Oxide Fuel Cell APU
 DELPHI

Bergstrom – eSHVAC Bergstrom

Exa – CFD Analysis

- OEM
 - Utility Trailer Manufacturing

- End User
 - US Xpress

Overview - Schedule and Budget

Budget

DoE Share: \$38.8M (49%) DOE Spend To-Date: \$31M

Contractor Share: \$40.3M (51%)

4 Year Program: April 2010 to April 2014

Overview - Program Barriers

- Underhood Cooling with Waste Heat Recovery
 - Vehicle and Engine System Weight Reduction
- Engine Downspeed (Reduced Engine Speed)
 - Powertrain Components
 - Vibration/Customer Acceptance
 - Vehicle and Powertrain Communication Speed
 - Trailer Aero Devices That Meet Operational Requirements
 - = Validated on Demonstrator 1 Truck
- Driver Acceptance of Drivability & System Displays
 - = Validated on Demonstrator 1 Truck
 - = To Be Validated on Demonstrator 2 Truck

DoE SuperTruck Program

Freight Efficiency Testing Technical Progress

	GVW	Freight	MPG (Range)	(Ave) FTMPG Improvement	(Ave) MPG Improvement
587 Demo 1	65k	32,705	9.3-10.2	61%	54%
		+1434			

Comprehensive <u>Approach</u> with Enabling Technology

Freight Efficiency Improvement – <u>Technical Progress</u>

Aerodynamic Improvements – <u>Technical Progress</u>

11

Demo 1 Truck/Trailer Weight <u>Technical Progress</u>

Demo 1 Truck/Trailer Weight <u>Technical Progress</u>

Driver Acceptance Technical Progress

- US Xpress Drive Event, Mar 21, 2013
 - Irving, TX to Laredo, TX (950 mile round trip)
 - Commercial Freight
 - US Xpress Drivers
- Feature/Functional Evaluation
 - Loading/Unloading Aero Trailer
 - Drivability
- Very Positive Event
- Critical and Valuable Feedback

Driver Acceptance Technical Progress

Approach – Freight Efficiency Path to Target

Aerodynamic Improvements – <u>Technical Progress</u>

17

Aerodynamic Improvements – <u>Technical Progress</u>

Freight Efficiency Improvement

0%

14%

25%

Milestones and Technical Accomplishments

- March 2012 to March 2013 Technical Accomplishments
 - √ Demonstrated 61% Freight Efficiency Improvement (Obj 2a)
 - ▼ Tested Advanced Transmission
 - ▼ Developed Hotel Profile w/ End User Concurrence
 - ▼ Performance Tested SOFC APU
 - √ Demo 2 Design Freeze (Objective 2b)
 - ▼ End User Testing of Tractor/Trailer Aerodynamic Solution
- March 2013 to March 2014 Future Work
 - Demo 2 Build, Engine "Vehicle" Calibration/Optimization
 - APU Technology Study Investigate Alternatives to SOFC
 - Test Vehicle Demonstration #2 (Objective 2b)
 - Vehicle Freight Efficiency on 24hr Cycle

Summary

- Program Remains on Schedule
 - Meeting the ARRA and DoE VT MYPP goals
- Demonstrated a 50+% BTE Engine System
- Demonstrated a 60+% Vehicle Freight Efficiency Improvement
- Analytical Roadmaps Updated with Experimental Component Data
- Vehicle Packaging and Integration Proceeding without Major Issues
- Built and Tested Sub-systems
 - Cummins Waste Heat Recovery Vehicle Testing (Objective 2a)
 - Advanced Transmission Dynamometer and Vehicle Test (Objective 2a)
 - Tractor-Trailer Aerodynamic Aids (Objective 2a)
 - Predictive Cruise
 - Solid Oxide Fuel Cell lab and Vehicle Tests (Objective 2b)
- Developed Framework and Analysis for 55% Thermal Efficiency
- Developed Working Relationship with Excellent Vehicle and Engine System Delivery Partners

FTE Deliverables On Track Technical Progress

Demo 2

4Q2013!